
 Echtfit prototyping tool - Animation system design specification

 Pose mapping

 This chapter describes how the 3D animation of Vere can be mapped onto the simplified kinematic model.

 Objective
 The complete ‘stick-figure’ that needs to be controlled is the simplified kinematic model of a human as is

 given in figure 7 .

 Figure 7 : Kinematic model (i.e. ‘stick-figure’).

 In the animation system the orientation of the segments in this kinematic model can be either controlled by

 the orientations from recorded data or those that are retrieved from the loaded file containing the

 animations as stored in a 3D model (see “ 3D animation file ”). This chapter describes the latter, i.e. the ‘pose

 mapping’.

 Segment mapping
 In the kinematic model shown in figure 7 above, the segments are explicitly indicated (“Right upper arm”,

 “Right lower arm”, etc). From a practical measuring perspective, this makes sense because this corresponds

 to the fact that a sensor will be also attached to a specific segment . In the kinematic model the joints are

 not explicitly defined as identifiable nodes. A joint angle that might be required is calculated by the relative

 rotation of a segment in the coordinate system of its parent.

 However, in the definition of the 3D model (stored in the glTF-file) this is done slightly differently and

 segments are not explicitly defined. Instead, the joints are defined and are connected in a hierarchical

 setup, i.e. the character is rigged as illustrated in the figure in an example in table 6 .

 - 13 -

 Echtfit prototyping tool - Animation system design specification

 Table 6 : Rigged character where the joints define the model and mapped to segments.

 Example rigged character 3D model Kinematic model

 ? Head

 DEF-spine.003 Torso

 DEF-upper_arm.R Right upper arm

 DEF-upper_arm.L Left upper arm

 DEF-fore_arm.R Right lower arm

 DEF-fore_arm.L Left lower arm

 DEF-spine Pelvis

 DEF-thigh.R Right upper leg

 DEF-thigh.L Left upper leg

 DEF-shin.R Right lower leg

 DEF-shin.L Left lower leg

 Segment orientation
 In the glTF-file, containing the 3D model, the animation is stored using a key-frame based description. This

 means that the actual orientation of a specific node at a certain timestamp is not explicitly available from

 the file itself, i.e. no frames are explicitly defined.

 To retrieve the orientations (and to visualize the animation), the glTF-file is first loaded into a scene using

 the SceneKit SDK. After the scene is loaded, the animation can be played.

 When playing the animation, we want the stick-figure to mimic the motions of the 3D model (as well as

 possible). For this we need to obtain the orientations of the nodes in the 3D model and map those on the

 segments of the stick-figure as given in table 6 . To do this, we can create a SCNSceneRendererDelegate

 on which the renderer(_:didRenderScene:atTime:) method is called each time Scenekit finishes

 rendering the animation on the screen for the current timestep. In this method, the worldOrientation is

 retrieved for each relevant node as it currently appears onscreen. Because the animation is implicit

 (remember that only key-frames are defined), this information is available in the presentation property

 of the node.

 For most segments this will work, however there is a problem with the shoulders because of the initial pose

 of the 3D character, which is defined as a T-pose (see figure 8) where the shoulders are not rotated.

 Figure 8 : T-pose, i.e. all nodes are unrotated.

 - 14 -

https://developer.apple.com/documentation/scenekit/scnscenerendererdelegate
https://developer.apple.com/documentation/scenekit/scnscenerendererdelegate/1524233-renderer
https://developer.apple.com/documentation/scenekit/scnnode/2867402-worldorientation
https://developer.apple.com/documentation/scenekit/scnnode/1408030-presentation

 Echtfit prototyping tool - Animation system design specification

 To compensate for this, a rotation of 45 degrees around the z-axis is first applied to the segment before 2

 adding the rotation of the corresponding 3D node. The following code snippet shows how to do this given

 the orientation of the node in the 3D model.

 let rotation = simd_quaternion(Double .pi/ 2 , simd_double(0 , 0 , 1))

 let newOrientation = simd_mul(nodeOrientation, rotation)

 2 Scenekit uses a right-handed coordinate system with y-up and the z-axis pointing out of the screen.

 - 15 -

